x^2/1.0-x=1.0*10^-5

Simple and best practice solution for x^2/1.0-x=1.0*10^-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2/1.0-x=1.0*10^-5 equation:



x^2/1.0-x=1.0*10^-5
We move all terms to the left:
x^2/1.0-x-(1.0*10^-5)=0
We add all the numbers together, and all the variables
x^2/1.0-1x-5-1.0E=0
We multiply all the terms by the denominator
x^2-1x*1.0-5*1.0-(1.0E)*1.0=0
We add all the numbers together, and all the variables
x^2-1x*1.0-5*1.0-(2.718281828459)*1.0=0
We add all the numbers together, and all the variables
x^2-1x*1.0-7.718281828459=0
Wy multiply elements
x^2-1x-7.718281828459=0
a = 1; b = -1; c = -7.718281828459;
Δ = b2-4ac
Δ = -12-4·1·(-7.718281828459)
Δ = 31.873127313836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{31.873127313836}}{2*1}=\frac{1-\sqrt{31.873127313836}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{31.873127313836}}{2*1}=\frac{1+\sqrt{31.873127313836}}{2} $

See similar equations:

| 2t-9=14-t | | –12=x–2-6 | | 2x(3x+12)=0 | | 3(y+3)=2(y-2) | | 8(u-6)+6u=-34 | | 36x2-12x=0 | | 14x+14=28=4x | | 18x+5=46°-1+8x | | -6=6v-5v | | 5x–6=2x+3.x+5= | | -16=3(x+8)-8x | | 3(b-2)+b=4 | | 8b+9-12b=4b-13-5b | | -30=-8v+2(v-3) | | 8j+4=76 | | -6=6v–5v | | (5x+7)×(3x-4)-8= | | -14=4p+3p | | -9x-40=8x-6 | | 3+2p=-11 | | –8−5z=–7z+8 | | 11a+5a-1=65a-36 | | 30+0.25f=59.50 | | n/3/8=-2 | | 3x+5-7=120 | | 2p+2=3 | | 4a-16=88 | | 1+-4d=-1 | | V=1/3*B*hV=56,h=8 | | -5(4-3p)= | | 6x2-8=4 | | 3(a+3)-a=-17 |

Equations solver categories